

416591334

Jupyter Notebooks for Linguists

Introduction to NLP FLAIR with Jupyter

André Renis

07.06.2022 - 10.06.2022

- Invented in 2014 by Fernando Pérez and Brian Granger starting with Julia, Python and R. - Now supporting 137 different kernels (runtime environments, programming languages)
- Inspired by Galileo's famous notebooks recording the discovery of the moons of Jupiter
- Describing text passages and scientific calculations/sketches are mixed in one document allowing a high transparency/documentation of the scientific approach
- This idea of a mixed scientific document is transferred into cloud computing with the possibility of interactive parallel work on the same resources within a browser
- Jupyter notebooks are running on a server: Starting programming works out of the box. There is no installation needed on your device.
- Servers are sometimes providing very fast GPU/TPU calculations

Jupyter notebooks — introduction

• Can be installed on your own server (or local device). But most

commonly used in a maintained cloud environment, like:

- Google Colaboratory (we will use this service)
- Kaggle.com
- Upcoming Jupyter-Hub at hu-berlin.de
- Jupyter-Notebook-Documents (*.ipynb) are stored
- in JSON-format on the server
 - → Every file has to be uploaded
- Two different types of sections:
 - A.) Formatted text sections: Markdown or LaTeX
 - B.) Interactive code sections: Python (and many others)
- Code is executed either entirely or section by section (input sections and output sections; values of variables are stored!)

- Jupyter notebooks are offering a new way of social coding (entirely open-source)
- Scientists can work together with same computing environment, testing code together, data input and results
- 3rd party modules have to be installed with pip (in a code section) like in a local installation. Example:
 - !pip install flair
 - → Everything needed to run a notebook is by definition part of the document (no hidden secrets behind)
 - Whole working environment can be stored (as documentation) in a docker-image (virtual machine):
 - → Results can be reproduced anytime/anywhere with same libs/configuration/code etc.
- \rightarrow Let's start with a first notebook document and install flair on google colab!

Jupyter notebooks - hands on!

- You can either work on your own or start a new notebook with someone else
 - → You can share documents in real time with Google Colab
- We will work in the same document the whole course: Let's start with a text section in markdown and produce some formatted text, like a headline and description of our project
- We want to explore Jupyter notebooks with Google Colab by:
 - Uploading a text-file (very small corpus) to Google Colab
 - Reading the content of the file with Python and store it to variable

What is FLAIR?

• A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and Zalando.

- Flair supports:
- Named entity recognition (NER)
- Part-of-speech tagging (PoS)
- Sense disambiguation and classification
- A growing number of languages
- Text/word embeddings
- Sequence labeling, text classification, similarity learning and text regression
- And much more!

Working with FLAIR

REGISTER CRC 1412

What we want today:

flair

- Read our text file with the FLAIR library
- Perform a POS-tagging on our text
- Perform a NER-tagging on our text
- Optionally perform a semantic frame detection (or search for offensive language)
- Save the results to an excel-sheet (you will need to construct nested cells if you have spans!)
- → You have to work with python documentation, flair documentation and openpyxl documentation

Levels of tagging in flair

- Tagging a whole text
- Tagging a whole sentence
- Tagging spans (ex. NER tagging) "George Washington"
- Tagging tokens (ex. POS tagging)

Solution of the exercise

```
from flair.models import MultiTagger
from flair.data import Sentence
from openpyxl import Workbook
file = open("merkel_interview.txt", "r")
content = file.read()
wb = Workbook()
ws = wb.create sheet("merkel interview", 0)
# Header in row 1 columns A,B,C,D,E
ws.append(['TEXT', 'POS', 'SCORE', 'NER', 'SCORE'])
tagger = MultiTagger.load(['de-ner', 'de-pos'])
sentence = Sentence(content)
tagger.predict(sentence)
for token in sentence:
    label = token.get label("de-pos")
    txt = token.text
    pos = label.value
    score = label.score
    # POS tagging values beginning at row #2 columns A,B,C
    ws.append([txt,pos,score]);
```


Solution of the exercise 2


```
# values for ner-tagging are going in column D and E
# Still looking for a better solution than the one below. I'am sorry. This is not beautiful ;-)
for span in sentence.get spans('de-ner'):
    txt = str(span) # String looks like this: Span[17:19]: "Wiebke Hollersen" → PER (0.9998)
    txt = txt[txt.index('[')+1:txt.index(']')] # we cut everything out within the square brackets
    txt = txt.split(":") # and we get the numbers of the index
    start = int(txt[0])+2 # sheet starts at row #2 because of header. Index of flair starts at 0
    end = int(txt[1])+1 # end position only +1
    ws['D' + str(start)] = span.tag # put values in fields for NER-data
    ws['E' + str(start)] = span.score
    if((end - start) > 0): # NER tagging is a span > token (only one row)
        # we have to merge the cells
        ws.merge cells('D' + str(start) + ':D' + str(end))
        ws.merge cells('E' + str(start) + ':E' + str(end))
wb.save('merkel interview.xlsx')
```


Solution of the exercise 3

Resulting Excel-Sheet with merged cells looks like this:

TEXT	POS	SCORE	NER	SCORE
Angela	NE	0,99999	7	
Merkel	NE	0,999994	4PER	0,999817
:	\$.	0,99999	7	
Sie	PPER	0,99999	7	
sprach	VVFIN	0,999999	9	
über	APPR	0,999999	9	
Putin	NE	0,89173	2PER	0,999612
,	\$,		1	
den	ART	0,99999	9	
Krieg	NN	0,999994	4	
,	\$,		1	
aber	KON	0,999842	2	
nicht	PTKNEG	0,999999	9	
über	APPR	0,999969	9	
den	ART		1	
3.	ADJA		1	
Oktober	NN	0,999994	4	
Wiebke	NE	0,999938	8	
Hollersen	NE	0,999	9PER	0,999785

Usefull resources

Jupyter

https://jupyter.org/

https://www.datacamp.com/tutorial/tutorial-jupyter-notebook

https://github.com/flairNLP/flair

We made lessons 1 + 2 of this tutorial

https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_1_BASICS.md

https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/Flair

NLP

https://thomaskrause.github.io/nlp-mit-python/https://web.stanford.edu/~jurafsky/slp3/

