
Python for linguists
SFB 1412 Methodschool

André Renis

26-28 May 2021

416591334

Python quick Facts

• Python programming language has been developed in the early 90s by
Dutch programmer Guido van Rossum

• Name "Python" comes from "Monthy Python's Flying Circus“
• Objectives has been:

• Easy to learn and to understand (readability)
• Platform independent
• General-purpose programming language:

• Supports procedural, functional and object-oriented programming
• Highly extensible (includes huge standard library)

• One of the most popular programming languages (together with C and
Java)

• Now often pre-installed on many Unix-compatible operating systems such
as MacOS and Linux.

2

Python version history

Version 1:
January 1994

Version 2:
October 2000

Version 3:
December 2008

Versions are not
compatible!

3

On many Linux-Systems Python2 and Python3 are installed at the same time! → Some problems/difficulties

Top 10 uses of Python in the real-world

1. Web application development (including mobile apps)
2. Data Science
3. Artificial Intelligence
4. Game development
5. Internet of Things (logistics)
6. Web Scraping (big data)
7. Desktop GUI
8. Enterprise applications
9. Image recognition and text processing
10. Education programs

4

How Python works on your computer

5Quelle: https://python-kurs.github.io/sommersemester_2019/units/S01E01.html

Python editors

• Code editors are providing a lot of help with syntax check and
testing/running/debugging your code on the fly

• You cannot use for example MS Word for programming because it‘s
formated text and not plain text

• Common editors for programming in python are:
• IntelliJ (PyCharm)
• Visual Studio Code
• Atom
• Sublime Text
• Vim
• Emacs
• Eclipse

6

Hello World! & Hello Visual Studio Code

Hands on! We want to write our first program together

And we want to explore Visual Studio Code and check if our installation
works.

Remarks and information on data privacy you can find here: https://thomaskrause.github.io/nlp-mit-python/setup.html

7

How do I write a program or a script?

• A script runs from the top of the file until the end, line by line

• Every line is ONE command and will be executed

• First you break your task into logical units, for example (modifying content of a file):
1. Read content of a file
2. Modify content
3. Save modified content to file

• Second you break each unit into single commands, step-by-step, line-by-line (according to
documentation of used lib or your own commands)

• But, to save for example the modified file-content somewhere, we need some kind of cache and
assign a value to it in our script. With data types, variables and operators we can do that.

• A program (only more complex compared to a script) doesn‘t run necessarily from top to end,
because a program is divided into modules with methods/functions and control structures for
different scenarios and cases we want to distinguish in the behavior of our program.

• Variables, data-types, operators, control structures and functions are the most basic ingredients
of every (higher) programming-language. More later!

8

What makes Python a ready to use
programming-language?

9

Core Python

• Operators, data types & variables

• Special keywords

• Control structures

• Built-in-functions

Python standard libraries

• Already installed (& precompiled to .pyc)

• Functions can simply be used with import

3rd party libraries

• Can be downloaded and installed on system with pip

• Functions can be used with import

Core Python: Scripting

#!/usr/bin/env python3

'''

Fuel Calculator, a more complex script with variables and the use of
built-in-functions

'''

fuel = 34

kilometers = 456

petrolConsumption = kilometers/fuel

petrolConsumption = round(petrolConsumption, 2)

message = "Your petrol consumption has been "

print(message + str(petrolConsumption)) # type cast from float to string

10

Core Python: built-in-functions

abs() delattr() hash() memoryview() set()

all() dict() help() min() setattr()

any() dir() hex() next() slice()

ascii() divmod() id() object() sorted()

bin() enumerate() input() oct() staticmethod()

bool() eval() int() open() str()

breakpoint() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

11

https://docs.python.org/3/library/functions.html#delattr
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/functions.html#func-memoryview
https://docs.python.org/3/library/functions.html#func-set
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#func-dict
https://docs.python.org/3/library/functions.html#help
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#-1,-1,NEXT
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#ascii
https://docs.python.org/3/library/functions.html#divmod
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#bin
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/functions.html#staticmethod
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#breakpoint
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#func-bytearray
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#func-bytes
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#func-tuple
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#chr
https://docs.python.org/3/library/functions.html#func-frozenset
https://docs.python.org/3/library/functions.html#func-list
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/functions.html#vars
https://docs.python.org/3/library/functions.html#classmethod
https://docs.python.org/3/library/functions.html#getattr
https://docs.python.org/3/library/functions.html#locals
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#globals
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/functions.html#__import__
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#hasattr
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#round

Core Python: Variables always have a data-type

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

12

a = 4
b = "test"
print(type(a)) # built-in-type-check
print(type(b))

Core Python: Keywords

We will use Pythons „interactive help“ to display a list of the so called
„keywords“ in Python. They are a little bit different in all programming
languages. They are reserved for special purposes.

1.) Type „help()“ in python console to start interactive help

2.) Type „keywords“

→ Offline available and useful. We will have a look at the “modules”
later

13

Core Python: functions and methods –
parameters & return value

What is the main difference between the built-in-functions

A.) print(„Something“)

B.) round(3. 1415926) ?

import math

def printAndRound(number):

number = round(number, 2)

print(number)

return number

result = printAndRound(math.pi)

14

Core Python: Control structures

if (condition): # True/False

expression1 # executed only if True

elif(other_condition): # True/False - More elif

#conditions can be added

expression2 # executed only if True

else:

expression3 # executed only if both above False

15

Core Python: Loops

while(condition): # True/False

expression # is executed every loop

for(start stop sequence): # for example runs from
first word of

a text to the last one;

iterates from start

to stop condition

expression # is executed every loop

16

Core Python: if … elif … else

if temperature > 20:

turnOffHeating()

elif temperature == 20:

print("We have reached 20°C now!")

else:

turnOnHeating()

17

Core Python: lists & for-loop

Hands on:

We want to calculate the percentage of articles in a text.

We will use python online documentation for that. We need lists an
loops for that.

A list in python looks like this:

articles = ["a", "an", "the"]

https://www.w3schools.com/python/default.asp

18

Core Python: lists & for-loop

text = '''

The CRC Register: Language Users’ Knowledge of Situational-Functional Variation investigates

aspects of the register knowledge of the speakers of a language. Competent speakers can adapt

their linguistic behavior on every level in response to the current situation:

They know, for example, that the German word sauer ‘ticked off’ is appropriate

in different situations than the word verärgert ‘angry’,

that one uses less complex sentences when speaking with children than in an academic function,

and that sometimes it matters whether one says around 8 o’clock or 7:49 am, and sometimes it doesn’t.

We are thus concerned with intraindividual variation.

'''

articles = ["a", "an", "the"]

articlesCount = 0

words = text.split()

for word in words:

if word.lower() in articles:

articlesCount = articlesCount+1

print(word)

print("The percentage of articles in this text is: " + str(articlesCount/len(words)*100) + "%")

19

Core Python: while + break & continue

def while1(end):

i = 1 # loop runs from 1 to end

while i < end:

print(i)

i += 1

def while2(end):

i = 1

while i < end:

print(i)

if i == 3:# loop ends at break keyword

break :# break is end of loop

i += 1

def while3(end):

i = 0

while i < end:

i += 1

if i == 3:

continue # execution ends here but
continues

print(i) # NOT executed in case of i==3

while1(6)

while2(6)

while3(6)

20

Core Python: Real-World Example

Hands on:

Lets open a text file with german umlauts. Then we replace the german
umlauts and save the content to a new file.

We will use python online documentation for that.

https://www.w3schools.com/python/default.asp

21

Core Python: Real-World Example

file = open("example.txt", encoding='utf8')

text = file.read()

text = text.replace('ü','ue')

text = text.replace('ä','ae')

text = text.replace('ö','oe')

text = text.replace('Ä','Ae')

text = text.replace('Ü','Ue')

text = text.replace('Ö','Oe')

text = text.replace('ß','ss')

file2 = open("example2.txt", "x", encoding='utf8')

file2.write(text)

file2.close()

file.close()

22

Core Python: Real-World Example
(Valentinas solution)

#python3

f = open("berlinWiki.txt", "r")

text = f.read()

umlauts = ["ä", "ö", "ü", "Ä", "Ö", "Ü", "ß"]

replacements = ["ae", "oe", "ue", "Ae", "Oe", "Ue", "ss"]

for umlaut in umlauts:

replacement = replacements[umlauts.index(umlaut)]

text = text.replace(umlaut, replacement)

print (text)

file = open("newText.txt", "x")

file.write(text)

file.close

23

Installing & using 3rd party modules

• Tons of python-projects (modules/libraries) are available at
https://pypi.org/ for almost every purpose and task (the search for
“linguistics” returns 544 matches (!))

• They all have a unique „name“ and can easily be added to your python
installation with a command-line tool called „pip“ (normally already
installed with python)

• For example to install Excel support (read and write xls(x) files in python)
simply type into your terminal window:

python -m pip install openpyxl
• That’s it! All files are downloaded automatically and added to your python-

installation
• With statement “import openpyxl” at the top of your script you can start

working with Excel-Files!

24

py -m pip install -r requirements.txt

https://pypi.org/

Real-World Example

25

py -m pip install -r requirements.txt

1. Please install pip on your computer

2. Please add spacy and openpyxl with pip to your python environment

3. Create a txt file in your Visual Studio with any kind text in English or
German

4. Write a python script that reads the content of the file and stores it in a
variable named “text”

5. Read the text with the spacy module and perform a part-of-speech
tagging with your text

6. Create an Excel Sheet in your script and create a header in the first row:
Text Lemma POS Tag Dep Shape alpha stop

7. Save the values of your part-of-speech tagging in this excel-file

Real-World Example

26

py -m pip install -r requirements.txt

import spacy

from openpyxl import Workbook # imports only parts of module

nlp = spacy.load("de_core_news_sm") # load german language files

file = open("maerchen.txt", "r", encoding='utf8') # open text file

text = file.read() # read content of file

doc = nlp(text) # create DOC Object by using api (api, modules and libraries are meaning the same) method

(you always have to look it up how it works depending on lib)

Now Spacy scans the text and does the work

wb = Workbook() # Create Excel File

ws = wb.create_sheet("Goethes Märchen", 0) # One Excel-File has one or more sheets. Let's create a first sheet at position 0

headers = ['Text', 'Lemma', 'POS', 'Tag', 'Dep', 'Shape', 'alpha', 'stop'] # a list for the headers

ws.append(headers) # the append() method of Object Worksheet is easy to use.

A list in python will be transformed to a new row (at the end) in excel

for token in doc:

ws.append([token.text, token.lemma_, token.pos_, token.tag_, token.dep_,token.shape_, token.is_alpha, token.is_stop])

same from above applies here. Every token becomes a new line in excel with selected information from

ws.auto_filter.ref = ws.dimensions # we apply auto-filter function to all columns

wb.save('maerchen.xls') # we save excel-file at same directory

Python: Useful resources

W3C tutorial
https://www.w3schools.com/python/default.asp

Thomas Krause on NLP
https://thomaskrause.github.io/nlp-mit-python/

Tutorial on GitHub
https://python-kurs.github.io/sommersemester_2019/intro.html

python.org official tutorial
https://docs.python.org/3/tutorial/index.html

27

https://www.w3schools.com/python/default.asp
https://thomaskrause.github.io/nlp-mit-python/
https://python-kurs.github.io/sommersemester_2019/intro.html
https://docs.python.org/3/tutorial/index.html

